
Hausdorff School: “Formal Mathematics and Computer-Assisted Proving”

Automated Theorem Proving with
Ordered Resolution and Superposition

Alexander Bentkamp

These notes are partly based on Uwe Waldmann’s lecture notes:
https://rg1-teaching.mpi-inf.mpg.de/autrea-ws21/readings.html

1 Motivation
Automatic theorem provers are computer programs that prove mathematical
theorems fully automatically. The user only provides the conjecture they would
like to prove. With a few notable exceptions1, they are far from the capabilities
of human mathematicians. An exciting application however, is to integrate
automatic theorem provers into proof assistants. Lean does not yet have such
an integration, but various other proof assistants do. They are called “hammers”
in honor of Sledgehammer, possibly the most successful such integration.

Automatic provers work best when their input is not too large. So instead of
providing the proof assistant’s entire library to the automatic prover, hammers
first determine the most promising facts from the library that might be needed
to prove a given conjecture.

The second step is to translate the selected facts and the conjecture. Proof
assistants typically operate on richer logics (dependent type theory or higher-
order logic) than automatic provers (typically first-order logic).

The automatic provers then attempt to prove the translated problem. If
a proof is found, the proof is finally reconstructed within the proof assistant,
where it is independently verified.

The two most successful automated theorem proving technologies in this
context are SMT and superposition. In this lecture series, we will focus on the
ordered resolution calculus, which is the restriction of superposition to first-order
logic without equality. My goal is to show that automated theorem provers can
not only help us to prove mathematical theorems, but that studying the calculi
implemented in these provers is also mathematically interesting.

2 First-Order Logic
Syntax We fix a set Ω of function symbols, and a set Π of predicate symbols.
Each of these symbols is associated with an arity arr ∶ Ω ⊍ Π → ℕ≥0. We call

1https://en.wikipedia.org/wiki/Computer-assisted_proof#Applications

1

https://rg1-teaching.mpi-inf.mpg.de/autrea-ws21/readings.html
https://en.wikipedia.org/wiki/Computer-assisted_proof#Applications

Σ = (Ω, Π, arr) the signature. Moreover, we fix a countably infinite set 𝒱 of
variables.

A term is inductively defined as follows:
• Every variable 𝑥 ∈ 𝒱 is a term.

• f(𝑡1, … , 𝑡𝑛) is a term for f ∈ Ω with arr(f) = 𝑛 and terms 𝑡1, …, 𝑡𝑛. (If
𝑛 = 0, we write f for f())

A formula is inductively defined as follows:
• p(𝑡1, … , 𝑡𝑛) is a formula (called atom) for p ∈ Π with arr(p) = 𝑛 and terms

𝑡1, …, 𝑡𝑛. (If 𝑛 = 0, we write p for p())
• The expressions ⊤, ⊥, ¬𝜑, 𝜑 ∧ 𝜓, 𝜑 ∨ 𝜓, 𝜑 → 𝜓, ∀𝑥. 𝜑, and ∃𝑥. 𝜑 are

formulas if 𝜑 and 𝜓 are formulas.
A term or formula is called ground if it contains no variables.
There are two variants of FOL: with and without equality. In FOL with ≈,

we require that Π contains a predicate symbol ≈, and we write 𝑡 ≈ 𝑠 for ≈(𝑠, 𝑡).

Semantics An interpretation ℐ = (𝒰, 𝒥) is a pair, consisting of a nonempty
set 𝒰 and a function 𝒥, which associates with each f ∈ Ω a function 𝒥(f) ∶
𝒰arr(𝑓) → 𝒰 and with each p ∈ Π a set 𝒥(p) ⊆ 𝒰arr(𝑝).

In FOL with ≈, we require that 𝒥(≈) = {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝒰}.
A valuation is a function 𝜉 ∶ 𝒱 → 𝒰. For an interpretation (𝒰, 𝒥) and a

valuation 𝜉, the denotation of a term is recursively defined as
• [[𝑥]]𝜉ℐ = 𝜉(𝑥) for 𝑥 ∈ 𝒱

• [[f(𝑡1, … , 𝑡𝑛)]]𝜉ℐ = 𝒥(f)([[𝑡1]]𝜉ℐ, … , [[𝑡𝑛]]𝜉ℐ) for f ∈ Ω and terms 𝑡1, … , 𝑡𝑛.

For ground terms 𝑡, we also write [[𝑡]]ℐ for [[𝑡]]𝜉ℐ because it does not depend on 𝜉.
A formula 𝜑 being true under ℐ and 𝜉, written ℐ, 𝜉 ⊧ 𝜑 is recursively defined

as:

ℐ, 𝜉 ⊧ p(𝑡1, …, 𝑡𝑛) iff ([[𝑡1]]𝜉ℐ, …, [[𝑡𝑛]]𝜉ℐ) ∈ 𝒥(p)
ℐ, 𝜉 ⊧ ⊤ always holds
ℐ, 𝜉 ⊧ ⊥ never holds

ℐ, 𝜉 ⊧ ¬𝜑 iff ℐ, 𝜉 ⊭ 𝜑
ℐ, 𝜉 ⊧ 𝜑 ∧ 𝜓 iff ℐ, 𝜉 ⊧ 𝜑 and ℐ, 𝜉 ⊧ 𝜓
ℐ, 𝜉 ⊧ 𝜑 ∨ 𝜓 iff ℐ, 𝜉 ⊧ 𝜑 or ℐ, 𝜉 ⊧ 𝜓

ℐ, 𝜉 ⊧ 𝜑 → 𝜓 iff ℐ, 𝜉 ⊭ 𝜑 or ℐ, 𝜉 ⊧ 𝜓
ℐ, 𝜉 ⊧ ∀𝑥. 𝜑 iff for every 𝑎 ∈ 𝒰, ℐ, 𝜉[𝑥 ↦ 𝑎] ⊧ 𝜑
ℐ, 𝜉 ⊧ ∃𝑥. 𝜑 iff for some 𝑎 ∈ 𝒰, ℐ, 𝜉[𝑥 ↦ 𝑎] ⊧ 𝜑

where

𝜉[𝑥 ↦ 𝑎](𝑦) = {𝑎 if 𝑦 = 𝑥
𝜉(𝑦) otherwise

2

• ℐ is a model of 𝜑, written ℐ ⊧ 𝜑, iff ℐ, 𝜉 ⊧ 𝜑 for all valuations 𝜉.

• A formula is valid if ℐ ⊧ 𝜑 for all interpretations ℐ.

• A formula is satisfiable if it has a model.

• A set of formulas 𝑁 entails a set of formulas 𝑀 , written 𝑁 ⊧ 𝑀 , if every
model of all formulas in 𝑁 is also a model of all formulas in 𝑀 .

Example Let Ω = {f} with arr(f) = 2 and Π = {p} with arr(p) = 2.

• The formula 𝜑 = ∀𝑥. ∀𝑦. p(𝑥, f(𝑥, 𝑦)) is satisfiable:

– For example, (𝒰, 𝒥) with 𝒰 = ℕ, 𝒥(f) = +, and 𝒥(p) = {(𝑎, 𝑏) ∣ 𝑎 ≤
𝑏} is a model:

ℐ ⊧ 𝜑
iff ℐ, 𝜉 ⊧ 𝜑 for all 𝜉
iff ℐ, 𝜉[𝑥 ↦ 𝑎][𝑦 ↦ 𝑏] ⊧ p(𝑥, f(𝑥, 𝑦)) for all 𝑎, 𝑏 ∈ 𝒰
iff (𝑎, 𝒥(f)(𝑎, 𝑏)) ∈ 𝒥(p)
iff 𝑎 ≤ 𝑎 + 𝑏

– Actually, any interpretation with 𝒥(p) = 𝒰 × 𝒰 is a model as well.

• The formula 𝜑 = ∃𝑥. p(𝑥, 𝑥) ∧ ¬p(𝑥, 𝑥) is unsatisfiable because we cannot
have an 𝑎 ∈ 𝒰 such that (𝑎, 𝑎) ∈ 𝒥(p) and (𝑎, 𝑎) ∉ 𝒥(p).

3 Herbrand Interpretations
Definition 1. Let (Ω, Π, arr) be a signature for FOL without ≈. Let Ω contain
at least one symbol of arity 0. A Herbrand interpretation is an interpretation ℐ =
(𝒰, 𝒥) where 𝒰 is the set of all ground terms over (Ω, Π, arr) and 𝒥(f)(𝑡1, …, 𝑡𝑛) =
f(𝑡1, …, 𝑡𝑛) for all function symbols f ∈ Ω.

(We can always add a dummy symbol of arity 0; this does not change the
satisfiablity of formulas.)

A Herbrand interpretation thus fixes the universe 𝒰 and the interpretation
of function symbols 𝒥(f). But the interpretation of predicate symbols 𝒥(p) can
be chosen freely:

Lemma 2. For a given signature, there is a bijection between sets 𝑆 of ground
atoms and Herbrand interpretations ℐ defined by

p(𝑡1, …, 𝑡𝑛) ∈ 𝑆 iff ℐ ⊧ p(𝑡1, …, 𝑡𝑛)

Below, we will identify sets of ground atoms with their corresponding Her-
brand interpretation.

3

4 Proving by Saturation
Paradigm for automated reasoning, foundation of both resolution and superpo-
sition

• Given: prove formula 𝜑
• Negate: ¬𝜑
• Bring ¬𝜑 into a normal form, resulting in a set of formulas 𝑁 (“essentially

equivalent” to ¬𝜑)

• Saturation loop:

– Add formulas to 𝑁 that follow from 𝑁 according to inference rules
– Remove redundant formulas according to redundancy criterion

• Stop when ⊥ has been derived

• Give up when no more inference rules apply

5 Clausal Normal Form
We use the clausal normal form (CNF). CNF formulas are structured as follows:

• An atom is a formula of the form p(𝑡1, … , 𝑡𝑛).
• A literal is a formula of the form 𝐴 or ¬𝐴 for some atom 𝐴.

• A clause is a formula of the form 𝐿1 ∨ ⋯ ∨ 𝐿𝑛 (or the empty clause ⊥) for
some literals 𝐿𝑖.

A CNF is a set of clauses, where

• we understand all variables as universally quantified;

• we understand the clauses in the set to be connected by ‘∧’;

Moreover, we will view clauses as multisets of literals—i.e.,

• We do not care about order of literals: 𝐿1 ∨ 𝐿2 ∨ 𝐿3 = 𝐿2 ∨ 𝐿3 ∨ 𝐿1.

• We care about multiplicity: 𝐿 ∨ 𝐿 ≠ 𝐿.

A CNF of a formula can be obtained as follows:

• Eliminate implications: replace 𝜑 → 𝜓 by ¬𝜑 ∨ 𝜓
• Pull ∀ and ∃ outwards

• Replace ∃ with Skolem function symbols (Skolemization)

4

• Push negations inwards using DeMorgan’s laws and eliminate double nega-
tions.

• Distribute ∨ inwards over ∧
• Eliminate ⊤ and ⊥
• Omit ∀s and view each conjunct as a clause

The result of this process is satisfiable iff the original formula was satisfiable.
So if the resulting set of clauses entails ⊥, then the original clause set entails ⊥.

Example Let p be a binary predicate symbol and c a nullary function symbol.

¬((∀𝑥. ∃𝑦. p(𝑥, 𝑦)) → ∃𝑧. p(c, 𝑧))
Eliminate implications: ¬(¬(∀𝑥. ∃𝑦. p(𝑥, 𝑦)) ∨ ∃𝑧. p(c, 𝑧))
Pull ∀ and ∃ outwards: ∀𝑥. ∃𝑦. ∀𝑧. ¬(¬p(𝑥, 𝑦) ∨ p(c, 𝑧))

Replace ∃ with Skolem function symbols: ∀𝑥. ∀𝑧. ¬(¬p(𝑥, f(𝑥)) ∨ p(c, 𝑧))
Push negations inwards: ∀𝑥. ∀𝑧. p(𝑥, f(𝑥)) ∧ ¬p(c, 𝑧)

Resulting clauses: p(𝑥, f(𝑥)), ¬p(c, 𝑧)

6 Inference Systems
A (clausal) inference is a tuple of clauses

(𝐶1, …, 𝐶𝑛, 𝐶𝑛+1), 𝑛 ≥ 0

written
premises

⏞⏞⏞⏞⏞𝐶1 … 𝐶𝑛
𝐶𝑛+1⏟

conclusion

An inference system is a set of such inferences.
Let Γ be an inference system.

• A clause 𝐶 is derivable by Γ from a clause set 𝑁 , written 𝑁 ⊢Γ 𝐶, if 𝐶 ∈ 𝑁
or if 𝐶 is the conclusion of a Γ-inference whose premises are derivable by
Γ from 𝑁 .

• Γ is sound if 𝑁 ⊢Γ 𝐶 implies 𝑁 ⊧ 𝐶 for all 𝐶 and 𝑁 (or in other words:
for every inference the premises entail the conclusion).

• Γ is complete if 𝑁 ⊧ 𝐶 implies 𝑁 ⊢Γ 𝐶 for all 𝐶 and 𝑁
• Γ is refutationally complete if 𝑁 ⊧ ⊥ implies 𝑁 ⊢Γ ⊥

5

• A set 𝑁 of clauses is saturated w.r.t. an inference system Γ if the conclusion
of any Γ-inference from clauses in 𝑁 is contained in 𝑁 .

Lemma 3. An inference system Γ is refutationally complete if and only if all
clause sets 𝑁 saturated w.r.t. Γ with ⊥ ∉ 𝑁 are satisfiable.

Proof. “⇐”: We assume that all saturated 𝑁 with ⊥ ∉ 𝑁 are satisfiable. Let
𝑁0 ⊧ ⊥ (i.e., 𝑁0 is unsatisfiable). To show: 𝑁0 ⊢Γ ⊥. Let 𝑁∞ = {𝐶 ∣ 𝑁0 ⊢Γ 𝐶}.
Clearly, 𝑁∞ is saturated. Moreover, since 𝑁0 ⊆ 𝑁∞, 𝑁∞ is unsatisfiable. By
assumption all saturated 𝑁 with ⊥ ∉ 𝑁 are satisfiable, so we must have ⊥ ∈ 𝑁∞
and thus 𝑁0 ⊢Γ ⊥.

“⇒”: We assume that Γ is refutationally complete. Let 𝑁 be saturated and
⊥ ∉ 𝑁 . It follows that 𝑁 ⊬Γ ⊥. By refutational completeness, 𝑁 ⊭ ⊥ and thus
𝑁 is satisfiable.

7 Resolution
Resolution is an inference system for FOL with ≈. History:

• Davis and Putnam, 1960: Resolution, but no efficient treatment of vari-
ables

• Robinson, 1965: Resolution with unification

• Slagle, 1967 / Maslov, 1968: Ordered resolution

• Bachmair and Ganzinger, 1990: Resolution with redundancy

7.1 Ground resolution
For now, we ignore variables and assume that all clauses are ground.

The ground resolution calculus has two inference rules: resolution and fac-
toring

𝐷 ∨ 𝐴 𝐶 ∨ ¬𝐴
ResG𝐷 ∨ 𝐶

𝐶 ∨ 𝐴 ∨ 𝐴
FactG𝐶 ∨ 𝐴

where 𝐶 and 𝐷 are clauses and 𝐴 is an atom.
The inference rules are schemas to describe all possible inferences of the

inference system. ResG and FactG are short names of the rules.
The idea of the resolution rule ResG is that we need to find a clause that

contains an atom 𝐴 positively (without ¬) and a clause that contains that same
atom negatively (with ¬). Then we remove the 𝐴 and the ¬𝐴 from those clauses
and collect all remaning literals from both clauses to form the conclusion.

The idea of the factoring rule FactG is to take a clause that contains the
same positive literal at least twice and remove one of the occurrences.

6

Exercise Convince yourself that the inference rules are sound, i.e., that the
premises entail the conclusion.

Example

initial clauses {p ∨ q(a), ¬p, ¬q(a)}
p ∨ q(a) ¬q(a)

ResGp
{p ∨ q(a), ¬p, ¬q(a), p}

p ¬p
ResG⊥ {p ∨ q(a), ¬p, ¬q(a), p, ⊥}

This is not the only way to derive the empty clause ⊥ from the initial set of
clauses: One could also start with the ResG inference between p ∨ q(a) and ¬p.
This is bad because an automated prover must perform all possible inferences
to make sure that it does not miss the essential ones. To keep our clause set
small, we would like to allow just enough inferences to be able to derive the
empty clause. We will see later how the ordered resolution calculus helps us
remove some of these superfluous routes to the empty clause.

7.1.1 Proof Idea for Refutational Completeness

We will prove refutational completeness as follows. There are other proofs of
refutational completeness of resolution, but this is the variant that can be ex-
tended to work for ordered resolution and resolution with redundancy as well.

• By Lemma 3, it suffices to show that any saturated set 𝑁 of ground
formulas with ⊥ ∉ 𝑁 is satisfiable.

• We explicitly construct a model of a given 𝑁 .

– We start with the Herbrand interpretation corresponding to the empty
set of ground atoms. (i.e., all predicates are always false)

– We inspect each clause in 𝑁 in a certain order and modify our in-
terpretation so that the current clause is true, without changing the
truth of previous clauses.

– In the limit, we obtain a model of 𝑁 .

7.1.2 Clause Order

• Choose an order ≻ of ground atoms that is total and well founded (no
infinite descending chain).

• Extend the atom order to literals:

– First compare the literal’s atoms: [¬]𝐴 ≻ [¬]𝐵 if 𝐴 ≻ 𝐵
– If the atoms are identical, the negative literal is larger: ¬𝐴 ≻ 𝐴

7

• Extend the order to clauses:

– To compare two clauses 𝐶 and 𝐷, find the largest literal whose num-
ber of occurrences in 𝐶 and 𝐷 is different.

– The clause that contains that literal more often is larger.

One can show that this clause order is a well-founded total order.

Example Let q(b) ≻ q(a) ≻ p be atoms. Then

¬q(b) ≻ q(b) ≻ ¬q(a) ≻ q(a) ≻ ¬p ≻ p

and
q(a) ∨ q(b) ∨ q(b) ≻ ¬p ∨ q(a) ∨ q(b) ≻ p ∨ p ∨ q(a) ∨ q(b)

Definition 4. We call a literal 𝐿 of a clause 𝐶 largest if 𝐿 ⪰ 𝐾 for all literals
𝐾 in 𝐶. We call a literal of a clause strictly largest if it is largest and occurs
only once.

7.1.3 Refutational Completeness

Let 𝑁 ∌ ⊥ be a clause set and ≻ a clause order as defined above. We define
sets 𝐼𝐶 and Δ𝐶 of ground atoms for all ground clauses 𝐶 recursively w.r.t. ≻:

𝐼𝐶 ∶= ⋃
𝐷≺𝐶

Δ𝐷

Δ𝐶 ∶= {{𝐴}, if 𝐶 ∈ 𝑁 , 𝐼𝐶 ⊭ 𝐶, a positive literal 𝐴 is strictly largest in 𝐶
∅, otherwise

If Δ𝐶 = {𝐴}, we say that 𝐶 is productive and produces 𝐴. Finally, let 𝐼𝑁 =
⋃𝐶 Δ𝐶 be our candidate interpretation.

Lemma 5.

(i) If 𝐼𝐷 ∪ Δ𝐷 ⊧ 𝐷, then 𝐼𝐶 ⊧ 𝐷 for all 𝐶 ≻ 𝐷 and 𝐼𝑁 ⊧ 𝐷.

(ii) If 𝐷 = 𝐷′ ∨ 𝐴 produces 𝐴, then 𝐼𝐶 ⊭ 𝐷′ for all 𝐶 ≽ 𝐷.

Proof. (i) Let 𝐼𝐷 ∪ Δ𝐷 ⊧ 𝐷. Then there must be a literal in 𝐷 that is true in
𝐼𝐷 ∪ Δ𝐷.

• If it is a positive literal 𝐴, then 𝐴 ∈ 𝐼𝐷 ∪ Δ𝐷 ⊆ 𝐼𝐶 ⊆ 𝐼𝑁 and thus 𝐼𝐶 ⊧ 𝐷
and 𝐼𝑁 ⊧ 𝐷.

• If it is a negative literal ¬𝐴, then 𝐴 ∉ 𝐼𝐷. Since ¬𝐴 ∈ 𝐷, no clause
≽ 𝐷 can contain 𝐴 as a strictly largest literal and thus no clause ≽ 𝐷 can
produce 𝐴. Thus, 𝐴 ∉ 𝐼𝐶 and 𝐴 ∉ 𝐼𝑁 and therefore 𝐼𝐶 ⊧ 𝐷 and 𝐼𝑁 ⊧ 𝐷.

8

(ii) Let 𝐷 = 𝐷′ ∨ 𝐴 produce 𝐴 and let 𝐶 ≽ 𝐷. By productivity, 𝐼𝐷 ⊭ 𝐷′

and thus 𝐼𝐷 ⊭ 𝐿 for every 𝐿 ∈ 𝐷′. We must show that also 𝐼𝐶 ⊭ 𝐿 for every
𝐿 ∈ 𝐷′.

• If 𝐿 = 𝐵 is a positive literal, then 𝐵 ∉ 𝐼𝐷. Since 𝐴 is strictly largest in
𝐷 = 𝐷′ ∨ 𝐴 and ≻ is total, 𝐵 ≺ 𝐴. So no clause ≽ 𝐷 can contain 𝐵 as
a strictly largest literal and thus no clause ≽ 𝐷 can produce 𝐵. Thus,
𝐵 ∉ 𝐼𝐶 and therefore 𝐼𝐶 ⊭ 𝐿.

• If 𝐿 = ¬𝐵 is a negative literal, then 𝐵 ∈ 𝐼𝐷 ⊆ 𝐼𝐶 and thus 𝐼𝐶 ⊭ 𝐿.

Example Let p ≺ q ≺ r, and 𝑁 = {¬p, p ∨ q, ¬q ∨ r ∨ r, ¬q ∨ ¬r}. We
order the clauses w.r.t. ≻, starting with the smallest clause, and construct the
candidate model:

𝐶 𝐼𝐶 Δ𝐶 Remarks
¬p ∅ ∅ 𝐼𝐶 ⊧ 𝐶

p ∨ q ∅ {q} 𝐼𝐶 ⊭ 𝐶, q strictly largest
¬q ∨ r ∨ r {q} ∅ 𝐼𝐶 ⊭ 𝐶, r is largest, but not strictly!

¬q ∨ ¬r {q} ∅ 𝐼𝐶 ⊧ 𝐶
However, the resulting interpretation 𝐼𝑁 = {q} is not a model of ¬q ∨ r ∨ r ∈ 𝑁 .
We will show that this can only happen when we forgot to perform an inference.
And indeed, the conclusion of

¬q ∨ r ∨ r
FactG¬q ∨ r

is missing. Adding this clause to 𝑁 we get the following candidate interpreta-
tion:

𝐶 𝐼𝐶 Δ𝐶 Remarks
¬p ∅ ∅ 𝐼𝐶 ⊧ 𝐶

p ∨ q ∅ {q} 𝐼𝐶 ⊭ 𝐶, q strictly largest
¬q ∨ r {q} {r} 𝐼𝐶 ⊭ 𝐶, r strictly largest

¬q ∨ r ∨ r {q, r} ∅ 𝐼𝐶 ⊧ 𝐶,
¬q ∨ ¬r {q, r} ∅ 𝐼𝐶 ⊭ 𝐶, but largest literal ¬r is negative!

This time, the resulting interpretation 𝐼𝑁 = {q, r} is not a model of ¬q∨¬r ∈ 𝑁 .
Again, this is because we forgot an inference:

¬q ∨ ¬r ¬q ∨ r
ResG¬q ∨ ¬q

Lemma 6. Let 𝑁 be a ground clause set saturated w.r.t. ground resolution
and ⊥ ∉ 𝑁 . Then for every 𝐶 ∈ 𝑁 , we have 𝐼𝐶 ∪ Δ𝐶 ⊧ 𝐶.

9

Proof. By well-founded induction on 𝐶 w.r.t. ≻, we assume that for every 𝐸 ∈ 𝑁
with 𝐸 ≺ 𝐶, we have 𝐼𝐸 ∪ Δ𝐸 ⊧ 𝐸. Consider the largest literal of 𝐶:
Case 1: The largest literal 𝐴 is positive and strictly largest. Then either 𝐼𝐶 ⊧ 𝐶
or Δ𝐶 = {𝐴}. Either way, it follows that 𝐼𝐶 ∪ Δ𝐶 ⊧ 𝐶.
Case 2: The largest literal 𝐴 is positive, but not strictly largest—i.e., 𝐶 =
𝐶′ ∨ 𝐴 ∨ 𝐴 for some 𝐶′. Since 𝑁 is saturated, due to the inference

𝐶′ ∨ 𝐴 ∨ 𝐴
FactG𝐶′ ∨ 𝐴

the clause 𝐸 = 𝐶′ ∨𝐴 must be in 𝑁 . Since 𝐸 ≺ 𝐶, by our induction hypothesis,
𝐼𝐸 ∪ Δ𝐸 ⊧ 𝐸. By Lemma 5(i), 𝐼𝐶 ⊧ 𝐸, and hence 𝐼𝐶 ⊧ 𝐶. Then 𝐶 is not
productive and 𝐼𝐶 ∪ Δ𝐶 ⊧ 𝐶.
Case 3: The largest literal ¬𝐴 is negative—i.e., 𝐶 = 𝐶′ ∨ ¬𝐴 for some 𝐶′. If
𝐴 ∉ 𝐼𝐶 , then 𝐼𝐶 ⊧ 𝐶 and we are done. Otherwise, 𝐴 ∈ 𝐼𝐶 and thus some clause
𝐷 = 𝐷′ ∨ 𝐴 with 𝐶 ≻ 𝐷 must have produced 𝐴. Since 𝑁 is saturated, due to
the inference

𝐷′ ∨ 𝐴 𝐶′ ∨ ¬𝐴
ResG𝐷′ ∨ 𝐶′

the clause 𝐸 = 𝐷′∨𝐶′ must be in 𝑁 . We have 𝐸 ≺ 𝐶 (The largest literal around
is ¬𝐴 and ¬𝐴 occurs less often in 𝐸 than in 𝐶). By our induction hypothesis,
𝐼𝐸 ∪ Δ𝐸 ⊧ 𝐸. By Lemma 5(i), 𝐼𝐶 ⊧ 𝐸, and by Lemma 5(ii), 𝐼𝐶 ⊭ 𝐷′. Thus,
𝐼𝐶 ⊧ 𝐶′ and hence 𝐼𝐶 ⊧ 𝐶.

Theorem 7. Ground resolution is refutationally complete.

Proof. By Lemma 3, it suffices to show that for all all saturated 𝑁 ∌ ⊥, we have
𝐼𝑁 ⊧ 𝑁 . By Lemma 6, for every 𝐶 ∈ 𝑁 , we have 𝐼𝐶 ∪ Δ𝐶 ⊧ 𝐶. By Lemma 5(i),
𝐼𝑁 ⊧ 𝐶.

7.1.4 Ordered ground resolution

Inspecting the proof of Lemma 6, we notice that we have used saturation of 𝑁
only for certain kinds of ResG and FactG inferences. This leads to ordered
resolution, here in its ground version:

𝐷 ∨ 𝐴 𝐶 ∨ ¬𝐴
ResOG𝐷 ∨ 𝐶

where 𝐴 is strictly largest in 𝐷 ∨ 𝐴 and ¬𝐴 is largest in 𝐶 ∨ ¬𝐴.

𝐶 ∨ 𝐴 ∨ 𝐴
FactOG𝐶 ∨ 𝐴

where 𝐴 is largest in 𝐶 ∨ 𝐴 ∨ 𝐴.
This stricter variant of the calculus is still refutationally complete and the

proof works as before.

10

7.2 (Nonground) Ordered Resolution
The real strength of resolution is that it can deal with variables. On ground
formulas, SAT solvers are much more efficient.

Idea: a nonground clause 𝐶 stands for all ground clauses that can be ob-
tained by substituting its variables. These ground clauses are called ground
instances 𝐺(𝐶). For example, if our signature contains a unary function f and
two constants a and b, then the clause p(𝑥) ∨ q(𝑥) stands for:

p(a) ∨ q(a) p(b) ∨ q(b)
p(f(a)) ∨ q(f(a)) p(f(b)) ∨ q(f(b))

⋮ ⋮

Based on this idea, we perform inferences on clauses with variables whenever
there are corresponding inferences on their ground instances:

q ∨ p(g(𝑥), 𝑦) r(𝑧) ∨ ¬p(𝑧, b)
ResOq ∨ r(g(𝑥))

We perform this inference although the atoms p(g(𝑥), 𝑦) and p(𝑧, b) are not
the same because they can be made the same by substituting variables. There
are infinitely many such substitutions, but the substitution {𝑦 ↦ b, 𝑧 ↦ g(𝑥)}
captures all of them by leaving the substitution of 𝑥 open. In general, for
any two terms there is always such a substitution that captures all substitutions
that would make the two terms equal, called the most general unifier.

In this way, we perform inferences on nonground clauses 𝑁 , simulating in-
ferences on their ground instances 𝐺(𝑁). Using this idea, we can show that
𝐺(𝑁) ⊢ ⊥ implies 𝑁 ⊢ ⊥. By refutational completeness of ground resolution,
if 𝐺(𝑁) ⊧ ⊥, then 𝐺(𝑁) ⊢ ⊥. Moreover, one can show that 𝑁 ⊧ ⊥ implies
𝐺(𝑁) ⊧ ⊥. It follows that nonground resolution is also refutationally complete,
i.e., that 𝑁 ⊧ ⊥ implies 𝑁 ⊢ ⊥.

Example Here is an example derivation for ordered resolution using three
input clauses. We assume that atoms starting with q are larger than atoms
starting with p. Each pair of arrows represents a ResO inference.

q(𝑣, 𝑣) ∨ ¬p(𝑧) ¬q(a, 𝑦) q(𝑢, b) ∨ p(f(𝑢, 𝑥))

¬p(𝑧) ¬p(f(a, 𝑥))

⊥

{𝑣 ↦ a} {𝑦 ↦ a} {𝑦 ↦ b} {𝑢 ↦ a}

{𝑧 ↦ f(a, 𝑥)}

11

8 Superposition
For first-order logic with equality, ordered resolution is quite inefficient. To rea-
son about equality using ordered resolution, we would have to axiomatize the
equality predicate: reflexivity, symmetry, transitivity, and congruence. With
these axioms, lots of new inferences are possible, slowing down provers signifi-
cantly.

The superposition calculus overcomes this issue with dedicated rules for
equality. In fact, once we can deal with equality efficiently, we can assume
that equality is the only predicate and encode other predicates p(𝑡1, … , 𝑡𝑛) as
p(𝑡1, … , 𝑡𝑛) ≈ true using a function symbol p and a dummy symbol true. As
a result, the literals of the clausal normal form for superposition are either
equalities 𝑠 ≈ 𝑡 or disequalities 𝑠 ≉ 𝑡.

Instead of a literal order, superposition is parameterized by an order ≻ on
terms that must fulfill certain properties. A literal order is induced by term
order:

• Compare the largest term of one literal with the largest term of another
literal

• If they are the same, compare the sign: negative literals are larger than
positive ones.

• If the sign is the same, compare the remaining terms.

The ground version of superposition’s inference rules are as follows:

𝐷 ∨ 𝑡 ≈ 𝑡′ 𝐶 ∨ [¬] 𝑠[𝑡] ≈ 𝑠′
Sup𝐷 ∨ 𝐶 ∨ [¬] 𝑠[𝑡′] ≈ 𝑠′

where 𝑡 ≻ 𝑡′; 𝑠[𝑡] ≻ 𝑠′; and 𝑡 ≈ 𝑡′ and [¬] 𝑠[𝑡] ≈ 𝑠′ are the largest literals in the
premisses. Here, 𝑠[𝑡] stands for a term 𝑠 that contains the subterm 𝑡. In the
conclusion, 𝑠[𝑡′] then represents the same term 𝑠[𝑡] with 𝑡 replaced by 𝑡′. The
notation [¬] means that the literal may be positive or negative, but the same
sign must be used in premise and conclusion.

𝐶 ∨ ¬ 𝑠 ≈ 𝑠
EqRes𝐶

where ¬ 𝑠 ≈ 𝑠 is the largest literal in the premise.

𝐶 ∨ 𝑠 ≈ 𝑡′ ∨ 𝑠 ≈ 𝑡
EqFact𝐶 ∨ ¬ 𝑡 ≈ 𝑡′ ∨ 𝑠 ≈ 𝑡′

where 𝑠 ≻ 𝑡 and 𝑠 ≈ 𝑡 is the largest literal in the premise.
Lifting of these rules to nonground clauses works in a similar fashion to

resolution. However, Sup inferences are not necessary if the term 𝑡 corresponds
to a variable or is contained in a variable in the nonground clause.

12

Exercises
Exercise 1. Derive ⊥ using the resolution calculus, starting with the following
set of clauses:

1. ¬p(f(c)) ∨ ¬p(f(c)) ∨ q(b)
2. p(f(c)) ∨ q(b)
3. ¬p(g(b, c)) ∨ ¬q(b)
4. p(g(b, c))

Exercise 2. Let a, b, c, d, e be predicates of arity 0. Consider the clauses

¬a ∨ ¬b ∨ ¬c ∨ ¬d ∨ ¬e a b c d e

What is the number of clauses that can be derived by resolution from this set of
clauses? What is the number of clauses that can be derived by ordered resolution
with some arbitrary total order on the predicates?

Exercise 3. Prove the following statement using the superposition calculus:

Assuming that 𝑥−1 = 1/𝑥 for all 𝑥 ≠ 0 and that 𝜋 ≠ 0, we have
|1/𝜋| = |𝜋−1|.

In first-order logic, we can express the statement as follows:

((∀𝑥. ¬𝑥 ≈ zero → inv(𝑥) ≈ div(one, 𝑥)) ∧ ¬pi ≈ zero)
→ abs(div(one, pi)) ≈ abs(inv(pi))

For the term order, simply order terms by the number of function symbols and
variables they contain (counting multiple occurrences). (Hint: You will not need
EqFact for this.)

Exercise 4. Let ∃𝑦. 𝜑 be a closed formula that does not contain the symbol
c. We further assume that ∃𝑦. 𝜑 is closed—i.e., all occurrences of variables are
bound by ∀ or ∃. Show that 𝜑{𝑦 ↦ c} (which is the Skolemization of this
formula) is satisfiable if ∃𝑦. 𝜑 is satisfiable.

You may use the following lemma (called the substitution lemma): Given
an interpretation ℐ, valuation 𝜉, variable 𝑦, term 𝑡 and formula 𝜑, we have
ℐ, 𝜉 ⊧ 𝜑{𝑦 ↦ 𝑡} iff ℐ, 𝜉[𝑦 ↦ [[𝑡]]𝜉ℐ] ⊧ 𝜑.

Exercise 5. Let 𝑆 be a function mapping each clause 𝐶 to a subset of its
negative literals. We call the literals in 𝑆(𝐶) the selected literals of 𝐶. We add
the following restriction to ground (unordered) resolution: ResG inferences are
only performed if either 𝑆(𝐶 ∨ ¬𝐴) = ∅ or ¬𝐴 ∈ 𝑆(𝐶 ∨ ¬𝐴). FactG inferences
are only performed if 𝑆(𝐶 ∨ 𝐴 ∨ 𝐴) = ∅. Show that Lemma 6 still holds using
this revised inference system.

13

Solutions
Solution for Exercise 1

1. ¬p(f(c)) ∨ ¬p(f(c)) ∨ q(b) (given)
2. p(f(c)) ∨ q(b) (given)
3. ¬p(g(b, c)) ∨ ¬q(b) (given)
4. p(g(b, c)) (given)
5. ¬p(f(c)) ∨ q(b) ∨ q(b) (ResG 2. into 1.)
6. ¬p(f(c)) ∨ q(b) (FactG 5.)
7. q(b) ∨ q(b) (ResG 2. into 6.)
8. q(b) (FactG 7.)
9. ¬p(g(b, c)) (ResG 8. into 3.)

10. ⊥ (ResG 4. into 9.)

Solution for Exercise 2 First, we consider unordered resolution. We can
derive 5 clauses with 4 literals:

¬b ∨ ¬c ∨ ¬d ∨ ¬e ¬a ∨ ¬c ∨ ¬d ∨ ¬e
¬a ∨ ¬b ∨ ¬d ∨ ¬e ¬a ∨ ¬b ∨ ¬c ∨ ¬e

¬a ∨ ¬b ∨ ¬c ∨ ¬d
From those, we can derive 10 clauses with 3 literals:

¬c ∨ ¬d ∨ ¬e ¬b ∨ ¬d ∨ ¬e ¬b ∨ ¬c ∨ ¬e ¬b ∨ ¬c ∨ ¬d
¬a ∨ ¬d ∨ ¬e ¬a ∨ ¬c ∨ ¬e ¬a ∨ ¬c ∨ ¬d ¬a ∨ ¬b ∨ ¬e

¬a ∨ ¬b ∨ ¬d ¬a ∨ ¬b ∨ ¬c
From those, we can derive 10 clauses with 2 literals:

¬d ∨ ¬e ¬c ∨ ¬e ¬c ∨ ¬d ¬b ∨ ¬e ¬b ∨ ¬d
¬b ∨ ¬c ¬a ∨ ¬e ¬a ∨ ¬d ¬a ∨ ¬c ¬a ∨ ¬b

From those, we can derive 5 clauses with 1 literal:

¬a ¬b ¬c ¬d ¬e
And finally the empty clause:

⊥
Including the 6 initial clauses, we have 6 + 5 + 10 + 10 + 5 + 1 = 37 derivable
clauses.

Next, we consider ordered resolution using the order a ≺ b ≺ c ≺ d ≺ e.
Now we are restricted to derive the following 5 clauses:

¬a ∨ ¬b ∨ ¬c ∨ ¬d ¬a ∨ ¬b ∨ ¬c ¬a ∨ ¬b ¬a ⊥
Including the 6 initial clauses, we have 6 + 5 = 11 derivable clauses.

14

Solution for Exercise 3 Negating and clausifying yields the following clauses:

𝑥 ≈ zero ∨ div(one, 𝑥) ≈ inv(𝑥) (1)
pi ≉ zero (2)

abs(div(one, pi)) ≠ abs(inv(pi)) (3)

In each clause, underlining indicates the largest side of the maximal literals. In
our examples, maximal simply means If we take 𝑥 in clause (1) to be pi, the
underlined term in (1) matches a subterm of the underlined term in clause (3).
Thus, we can apply Sup using as premises the instance

pi ≈ zero ∨ div(one, pi) ≈ inv(pi)

of clause (1) together with clause (3) to obtain

pi ≈ zero ∨ abs(inv(pi)) ≠ abs(inv(pi)) (4)

Next, we apply EqRes to clause (4) to generate

pi ≈ zero (5)

Now that we have eliminated the larger literal of (4), we may work on the
remaining smaller literal. There are multiple Sup inferences possible—e.g., be-
tween clauses (5) and (3) or between (5) and (4). The inference that leads to the
desired contradiction, however, is a Sup inference between clauses (5) and (2)
that produces

zero ≠ zero (6)

Finally, an EqRes inference on clause (6) yields the empty clause, which proves
that the original lemma holds.

Solution for Exercise 4 Let ℐ = (𝒥, 𝒰) be a model of ∃𝑦. 𝜑. Let 𝜉 be a
valuation. Then

ℐ, 𝜉 ⊧ ∃𝑦. 𝜑
By the semantics of ∃, there exists an 𝑎 ∈ 𝒰 such that

ℐ, 𝜉[𝑦 ↦ 𝑎] ⊧ 𝜑

Since ∃𝑦. 𝜑 is closed, this 𝑎 does not depend on 𝜉. We define 𝒥′(c) = 𝑎 and let
𝒥′ coincide with 𝒥 otherwise. Let ℐ′ = (𝒥′, 𝒰). Since c does not occur in 𝜑, we
have

ℐ′, 𝜉[𝑦 ↦ 𝑎] ⊧ 𝜑
By the substitution lemma, since [[c]]𝜉ℐ′ = 𝑎,

ℐ′, 𝜉 ⊧ 𝜑{𝑦 ↦ c}

This holds for any 𝜉 and thus ℐ′ is a model of 𝜑{𝑦 ↦ c}

15

Solution for Exercise 5 If 𝑆(𝐶) = ∅, we can proceed as in the original proof
of Lemma 6. Otherwise, there exists some ¬𝐴 ∈ 𝑆(𝐶)—i.e., 𝐶 = 𝐶′ ∨ ¬𝐴
for some 𝐶′. Note that ¬𝐴 is not necessarily maximal. Nonetheless, we can
proceed similarly to Case 3 of the original proof: If 𝐴 ∉ 𝐼𝐶 , then 𝐼𝐶 ⊧ 𝐶 and
we are done. Otherwise, 𝐴 ∈ 𝐼𝐶 and thus some clause 𝐷 = 𝐷′ ∨ 𝐴 with 𝐶 ≻ 𝐷
must have produced 𝐴. Since 𝑁 is saturated, due to the inference

𝐷′ ∨ 𝐴 𝐶′ ∨ ¬𝐴
ResG𝐷′ ∨ 𝐶′

the clause 𝐸 = 𝐷′ ∨𝐶′ must be in 𝑁 . This inference is permitted because ¬𝐴 is
selected in 𝐶. Since 𝐷 produced 𝐴, 𝐴 is strictly largest in 𝐷 and thus all literals
in 𝐷′ are smaller than ¬𝐴. It follows that the number of occurrences of ¬𝐴 is
smaller in 𝐸 than in 𝐶′ ∨ ¬𝐴 and therefore we have 𝐸 ≺ 𝐶. By our induction
hypothesis, 𝐼𝐸 ∪Δ𝐸 ⊧ 𝐸. By Lemma 5(i), 𝐼𝐶 ⊧ 𝐸, and by Lemma 5(ii), 𝐼𝐶 ⊭ 𝐷′.
Thus, 𝐼𝐶 ⊧ 𝐶′ and hence 𝐼𝐶 ⊧ 𝐶.

16

	Motivation
	First-Order Logic
	Herbrand Interpretations
	Proving by Saturation
	Clausal Normal Form
	Inference Systems
	Resolution
	Ground resolution
	Proof Idea for Refutational Completeness
	Clause Order
	Refutational Completeness
	Ordered ground resolution

	(Nonground) Ordered Resolution

	Superposition

