
HHLPy: Practical Verification of Hybrid Systems
using Hoare Logic

Huanhuan Sheng1,2, Alexander Bentkamp1, and Bohua Zhan1,2

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
{shenghh,bentkamp,bzhan}@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. We present a tool for verification of hybrid systems expressed
in the sequential fragment of HCSP (Hybrid Communicating Sequential
Processes). The tool permits annotating HCSP programs with pre- and
postconditions, invariants, and proof rules for reasoning about ordinary
differential equations. Verification conditions are generated from the an-
notations following the rules of hybrid Hoare logic. We designed label-
ing and highlighting mechanisms to distinguish and visualize different
verification conditions. The tool is implemented in Python and has a
web-based user interface. We evaluated the effectiveness of the tool on
translations of Simulink/Stateflow models and on KeYmaera X bench-
marks.
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1 Introduction

Hybrid systems refer to systems that have both continuous and discrete be-
haviors. They occur in diverse areas of science and engineering, ranging from
transportation and spaceflight, to robots and medical devices. Hence, verifying
that hybrid systems meet certain specifications is an important problem. Apart
from methods such as monitoring and model checking, theorem proving is one
of the major approaches to verifying hybrid systems.

There is a substantial amount of previous work on verification of hybrid
systems based on theorem proving. One major framework is Platzer’s differ-
ential dynamic logic (dL) [21, 23], and the associated KeYmaera/KeYmaera X
prover [9, 24]. Recently, a Hoare logic has been introduced for dL and imple-
mented within the Isabelle proof assistant [19]. We review these works in detail
in Section 8 of this paper.

Another approach is to model hybrid systems using HCSP (Hybrid CSP)
[12, 33], an extension of CSP (Communicating Sequential Processes) to include
continuous evolution. Its semantics of continuous evolution is more deterministic
than dL’s, so it can be used naturally for capturing Simulink/Stateflow models.
A hybrid Hoare logic has been developed for HCSP, and is implemented in
Isabelle [28]. However, the practical application of the tool is complicated by
its steep learning curve. To use this tool, the user need to be familiar with the
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Isabelle proof assistant and with the particular library of theorems. This is in
stark contrast to KeYmaera X, which allows users to verify hybrid programs by
choosing menu actions and offers highly specialized automation.

This paper introduces HHLPy3, a tool for verification of the sequential part
of HCSP with a friendly graphical user interface. The tool is based on a Hoare
logic for reasoning about sequential HCSP programs and supports various Hoare
logic rules to verify the behavior of differential equations. These rules are closely
related to rules in dL, but due to the semantic differences of HCSP, we adapted
some of the rules and informally proved our rules to be sound (Section 3).

Based on these Hoare logic rules for differential equations, we devised an
automatic verification condition generation procedure that computes verification
conditions (VCs) from a given annotated HCSP program (Section 4).

One slight difference between our work and traditional VC generation is that
we express VCs as a set of conditions, rather than a single condition composing
individual VCs with ‘∧’. With each VC, we associate a label to distinguish
between different VCs, so that users can choose solvers (currently either Z3 [17]
or Wolfram Engine [29]) for each VC individually (Section 5).

To visualize to the user where each VC originates from, a highlighting mech-
anism highlights the set of code fragments in the annotated program that con-
tributed to generating the VC (Section 6).

We implemented the tool using Python and JavaScript and evaluated it on
Simulink/Stateflow models and on KeYmaera X benchmarks (Section 7). We
translated two Simulink/Stateflow models using the toolchain developed by Zou
et al. [34,35] and verified them in our tool. Due to differences in the semantics of
dL and HCSP, we translated each KeYmaera X benchmark by hand, trying to
maintain semantic equivalence as much as possible. In this way, we succeeded to
use our tool to solve most of the verification problems in the basic and nonlinear
KeYmaera X benchmarks.

2 Preliminaries

In this section, we present the sequential fragment of HCSP, with an informal
explanation of its semantics. We further give an overview of the existing toolchain
on translation of Simulink/Stateflow models into HCSP.

2.1 Sequential fragment of HCSP

Hybrid CSP (HCSP), introduced in [12, 33], is an extension of Hoare’s Com-
municating Sequential Processes to include continuous evolution. It can model
communicating processes running in parallel, where each process may have both
continuous and discrete behavior. In this paper, we focus on the sequential frag-
ment of HCSP, consisting of the following commands:

S, T ::= skip | x := e | x := ∗ (B) | S;T | if B then S else T | S ++T | S∗
| ⟨ẋ = e&D⟩

3 The tool is available at https://github.com/bzhan/mars/tree/master/hhlpy

https://github.com/bzhan/mars/tree/master/hhlpy
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Here skip does nothing. x := e assigns the value of expression e to variable
x. x := ∗ (B) is nondeterministic assignment of some value satisfying condition
B to x. S;T and if B then S else T are regular sequential composition and
conditional. S ++T is a nondeterminstic choice between S and T . S∗ runs S a
nondeterministic number of times (including zero).

The ordinary differential equation (ODE) command ⟨ẋ = e&D⟩ specifies
continuous evolution in HCSP. It makes the vector of variables x evolve according
to ODE ẋ = e until the domain D becomes false. If D is false from the start,
the ODE is skipped. In contrast to dL, where continuous evolution may stop at
any point within the specified domain, in HCSP it always continues up to the
boundary. In this paper, we assume D is given by a polynomial inequality of the
form p(x) < 0, so it represents an open set in Rn.

We assume in this paper that all expressions appearing in an HCSP program
(as well as in annotations to be discussed later) are polynomials, hence continuity
conditions are trivially satisfied.

For a formal treatment of semantics of HCSP (including communication and
parallel composition), we refer to Zhan et al. [31, Chapter 6].

2.2 Translation from Simulink/Stateflow

The HCSP language is located at the center of a toolchain that also includes
translation from Simulink/Stateflow models, simulation and code generation [2].
The original translation algorithms from Simulink [35] and Stateflow [34] pro-
duce HCSP programs that involve communication between parallel processes.
However, more recent methods by Xu et al. [30] and Guo et al. [10] produce
sequential HCSP programs. We use these translation methods for verification of
Simulink/Stateflow models in Section 7.

3 Proof Rules of Hybrid Hoare Logic

In this section, we present the Hoare logic that forms the basis of our verification
tool. The Hoare triple for partial correctness, written as {P}c{Q}, means starting
from a state satisfying assertion P , any terminating execution of c reaches a state
satisfying assertion Q. The Hoare rules for ordinary commands (except ODEs)
are standard, and are presented in Appendix A.

Hence, we focus on the Hoare rules for ODEs. These rules are mostly adapted
from rules for dL, as given in [23,26]. Due to the difference in semantics between
HCSP and dL, several of the rules take on different forms. We do not aim to
present a minimal set of rules, instead providing users a wide range of choices.

3.1 Proof rules based on invariants

In order to state proof rules based on invariants of ODEs, we require an addi-
tional kind of judgments, called invariant triples.



4 H. Sheng, A. Bentkamp et al.

Definition 1 (Invariant Triple). We say that Q is an invariant of ODE ẋ = e
under domain P , written as

JP K⟨ẋ = e⟩JQK

if for any solution γ : [0, T ] → Rn such that γ(t) satisfies P for all t ∈ [0, T ] and
such that γ(0) satisfies Q, γ(t) satisfies Q for all t ∈ [0, T ].

Differential Weakening The differential weakening rule (dW) reduces a Hoare
triple goal to an invariant triple, incorporating the domain condition.

JDK⟨ẋ = e⟩JIK ∂D ∧ I → Q
dW

{(D → I) ∧ (¬D → Q)}⟨ẋ = e&D⟩{Q}

Note the rule is in the form that allows us to derive a precondition from any
postcondition. The precondition (D → I) ∧ (¬D → Q) corresponds to the two
cases for the state before ODE: if the state satisfies domain D, then it should
satisfy the invariant. Otherwise it should satisfy the postcondition Q directly.
An informal proof for the (dW) rule (as well as for all of the ODE rules below)
is given in Appendix A. Two special cases of the rule, for I set to true and false,
provide further intuition. They correspond to cases where no invariant is needed,
and where the starting state is known to satisfy ¬D.

∂D → Q
dWT

{¬D → Q}⟨ẋ = e&D⟩{Q}
dWF

{¬D ∧Q}⟨ẋ = e&D⟩{Q}

Differential Invariant The differential invariant rule (dI) is essentially the
same as that in dL. It concludes invariants from computation of Lie derivatives.

P → ḟ = 0
dI=JP K⟨ẋ = e⟩Jf = 0K

Here ḟ denotes the Lie derivative of f under the differential equation ẋ = e.
The corresponding rules for inequality and disequality are as follows, where ≽
denotes either > or ≥.

P → ḟ ≥ 0
dI≽JP K⟨ẋ = e⟩Jf ≽ 0K

P → ḟ = 0
dI ̸=JP K⟨ẋ = e⟩Jf ̸= 0K

Differential Cut The differential cut rule (dC) inserts an intermediate invari-
ant to be proved, and afterwards permits the use of this invariant to show further
invariants. In contrast to dL, it is not possible to record previously proved in-
variants as conjuncts in the domain. Instead we place them in the premise of
the invariant triple. Indeed this is the primary motivation for introducing the
concept of invariant triples.

JP K⟨ẋ = e⟩JQ1K JP ∧Q1K⟨ẋ = e⟩JQ2K
dC

JP K⟨ẋ = e⟩JQ1 ∧Q2K
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The (dC) rule can be used multiple times to show conjunction of more than
two invariants. For example, if we wish to show three invariants Q1, Q2, Q3

in that order, first apply the (dC) rule with Q1 and Q2 to obtain JP K⟨ẋ =
e⟩JQ1 ∧Q2K, then apply the (dC) rule again as follows:

JP K⟨ẋ = e⟩JQ1 ∧Q2K JP ∧Q1 ∧Q2K⟨ẋ = e⟩JQ3K
dC

JP K⟨ẋ = e⟩JQ1 ∧Q2 ∧Q3K

This permits Q1 to be used when showing invariance of Q2, and both Q1 and
Q2 to be used when showing invariance of Q3.

Differential Ghost The differential ghost rule (dG) adds new variables satis-
fying some differential equations to help prove the Hoare triple of the original
differential equations.

JDK⟨ẋ = e, ẏ = f(x,y)⟩JIK ∂D ∧ I → Q
dG

{(D → ∃y. I) ∧ (¬D → Q)}⟨ẋ = e&D⟩{Q}

Here, y are fresh variables that do not occur in ⟨ẋ = e&D⟩ or Q, and f(x,y)
satisfies the Lipschitz condition.

Barrier Certificate The barrier certificate rule (bc) concludes invariants from
the definition of barrier certificate.

P ∧ f = 0 → ḟ > 0
bc

JP K⟨ẋ = e⟩Jf ≽ 0K

Here, e is a continuous function. f is a 1-time continuously differentiable func-
tion.

Darboux The Darboux rule (dbx) exploits properties of Darboux invariants,
which are inspired by Darboux polynomials. Darboux equality and inequality
rules are as follows.

P → ḟ = gf
dbx=JP K⟨ẋ = e⟩Jf = 0K

P → ḟ ≥ gf
dbx≽JP K⟨ẋ = e⟩Jf ≽ 0K

Here, f and g are polynomials of x.

3.2 Solution Rule

The solution rule offers another way to conclude Hoare triples directly, inde-
pendent of using the (dW) or (dG) rule followed by proving invariants. In the
rule below, e is linear in x, and u(t,x) is the unique solution to the differential



6 H. Sheng, A. Bentkamp et al.

equation ẋ = e with symbolic initial value x (that is, du(t,x)
dt = e(u(t,x)) and

u(0,x) = x). Let P ′(x) denote the following predicate on the starting state x:

∀t > 0. (∀0 ≤ τ < t.D(u(τ,x))) ∧ ¬D(u(t,x)) → Q(u(t,x)).

The solution rule for Hoare triples (sln) is:

sln
{(D → P ′) ∧ (¬D → Q)}⟨ẋ = e&D⟩{Q}

4 Verification Condition Generation

The VC generation procedure operates on annotated sequential HCSP programs.
For ODEs, there are two kinds of annotations: ghost variable (gvar) and invariant
annotations (ode inv):

gvar ::= ghost z (ż = f(x, z))
ode inv ::= [I] | [I] {dbx c} | [I] {bc}

Here, ‘ghost z (ż = f(x, z))’ denotes a ghost variable z following the ODE
ż = f(x, z), where f must be linear in z to ensure global Lipschitz condition. The
annotation [I] denotes showing invariant I using the (dI) rule. The annotation
[I] {dbx c} denotes showing an invariant using the (dbx) rule, with c being the
optional cofactor. The annotation [I] {bc} denotes using the (bc) rule.

The syntax for annotated sequential HCSP programs is:

S, T ::= skip | x := e | x := ∗(B) | S; T | if B then S else T |
S ++ T | S ∗ invariant [I1] . . . [In] |
⟨ẋ = e&D⟩ invariant gvar1 . . . gvark, ode inv1 . . . ode invn |
⟨ẋ = e&D⟩ solution

The only addition to the syntax of HCSP is that each loop is followed by a
list of invariants I1, . . . , In, and each ODE is either followed by a list of ghost
variable declarations and a list of invariant annotations, each of which specify
an invariant to be proved using one of (dI), (dbx), or (bc) rules, or followed by
the annotation “solution” to indicate that the (sln) rule is to be used.

To generate the necessary VCs for a given Hoare triple, we devised a proce-
dure using weakest preconditions [3,4]. To be able to refer to preconditions and
VCs individually, we consider sets of conditions instead of composing predicates
by ∧.

Given a Hoare triple {P1∧ · · · ∧Pm}S{Q1∧ · · · ∧Qn} to verify, we define the
set of all VCs to be

VC({P1 ∧ · · · ∧ Pm}S{Q1 ∧ · · · ∧Qn}) =
{P1 ∧ · · · ∧ Pm → R | R ∈ pre(S, {Q1, . . . , Qn})} ∪ (pre)

{P̃1 ∧ · · · ∧ P̃m̃ → R | R ∈ vc(S, {Q1, . . . , Qn})} (vc)

where P̃1, . . . , P̃m̃ is the subset of the preconditions P1, . . . , Pm whose variables
are never reassigned in S, and the functions pre and vc are defined below.
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Given an annoated program S and a set {Q1, . . . , Qn} of postconditions,
we denote the set of derived preconditions as pre(S, {Q1, . . . , Qn}), defined as
follows.

pre(S, {Q1, . . . , Qn}) = pre(S, Q1) ∪ · · · ∪ pre(S, Qn) (pre-multi)
pre(skip, Q) = Q (pre-skip)
pre(x := e,Q) = Q[e/x] (pre-assn)
pre(S; T , Q) = pre(S,pre(T , Q)) (pre-seq)
pre(if B1 then S1 else if · · · else if Bn−1 then Sn−1 else Sn, Q) =

{¬(B1 ∨ · · · ∨Bi−1) ∧Bi → P | P ∈ pre(Si, Q), 1 ≤ i ≤ n− 1} ∪ (pre-if)
{¬(B1 ∨ · · · ∨Bn−1) → P | P ∈ pre(Sn, Q)} (pre-else)

pre(S1 ++ · · · ++Sn, Q) = pre(S1, Q) ∪ · · · ∪ pre(Sn, Q) (pre-choice)
pre(x := ∗ (B), Q) = B[y/x] → Q[y/x] for a fresh variable y (pre-nassn)
pre(S ∗ invariant [I1] . . . [In], Q) = {Ij | 1 ≤ j ≤ n} (pre-loop)
pre(⟨ẋ = e&D⟩ invariant gvar1 . . . gvark, ode inv1 . . . ode invn, Q) =
Pskip ∪ Pinit

pre(⟨ẋ = e&D⟩ solution) = Pskip ∪ Psln

where

Pskip = {¬D → Q} (pre-dWG-skip)
Pinit = {D → ∃z1, . . . , zk. I1 ∧ · · · ∧ In} if k > 0 (pre-dG-init)
Pinit = {D → Ij , | 1 ≤ j ≤ n} otherwise (pre-dW-init)
Psln = {D → (∀t > 0. (∀0 ≤ τ < t.D(u(τ,x))) ∧

¬D(u(t,x)) → Q(u(t,x)))} (pre-sln)

where z1, . . . , zk are the ghost variables provided in gvar1 . . . gvark, and I1, . . . , In
are the invariants provided in ode inv1, . . . , ode invn. If user chooses the (sln)
rule, we verify that e is linear in x and compute the unique solution u(τ,x) to
the ODE with symbolic initial value x.

Given an annotated program S and a set {Q1 . . . , Qn} of postconditions, we
denote the set of internal VCs as vc(S, {Q1, . . . , Qn}), defined as follows.

vc(S, {Q1, . . . , Qn}) = vc(S, Q1) ∪ · · · ∪ vc(S, Qn) (vc-multi)
vc(skip, Q) = ∅ (vc-skip)
vc(x := e,Q) = ∅ (vc-assn)
vc(S; T , Q) = vc(S,pre(T , Q)) ∪ vc(T , Q) (vc-seq)
vc(if B1 then S1 else if · · · else if Bn−1 then Sn−1 else Sn, Q) =
vc(S1, Q) ∪ · · · ∪ vc(Sn, Q) (vc-ite)

vc(S1 ++ · · · ++Sn, Q) = vc(S1, Q) ∪ · · · ∪ vc(Sn, Q) (vc-choice)
vc(x := ∗ (B), Q) = ∅ (vc-nassn)
vc(S ∗ invariant [I1] . . . [In], Q) =
vc(S, {I1, . . . , In}) ∪ (vc-loop-body)
{(I1 ∧ · · · ∧ In) → Q} ∪ (vc-loop-exit)
{(I1 ∧ · · · ∧ In) → P | P ∈ pre(S, {I1, . . . , In})} (vc-loop-maintain)

vc(⟨ẋ = e&D⟩ invariant gvar1 . . . gvarm, ode inv1 . . . ode invn, Q) = Cexec ∪ CdC

vc(⟨ẋ = e&D⟩ solution, Q) = ∅
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where we set Cexec = ∅ if the only invariant is false, or else

Cexec = {I1 ∧ · · · ∧ In ∧ ∂D → Q} (vc-dWG-exec)
CdC = {I1 ∧ · · · ∧ Ij−1 → R | R ∈ vc(⟨ẋ = e&D⟩, ode invj , Q),

1 ≤ j ≤ n} (vc-dC)

Here, I1, . . . , In are the invariants provided in ode inv1, . . . , ode invn. If no in-
variants are specified, we set a single invariant I1 = true by default. We write
vc(⟨ẋ = e&D⟩, ode invj , Q) for the VC generated from annotation ode invj ,
defined as follows.

vc(⟨ẋ = e&D⟩, [true], Q) = ∅ (vc-true)
vc(⟨ẋ = e&D⟩, [false], Q) = ∅ (vc-false)

vc(⟨ẋ = e&D⟩, [f = 0], Q) = {D → ḟ = 0} (vc-dI1)

vc(⟨ẋ = e&D⟩, [f ≽ 0], Q) = {D → ḟ ≥ 0} (vc-dI2)

vc(⟨ẋ = e&D⟩, [f ̸= 0], Q) = {D → ḟ = 0} (vc-dI3)

vc(⟨ẋ = e&D⟩, [f = 0] {dbx g}, Q) = {D → ḟ = gf} (vc-dbx1)

vc(⟨ẋ = e&D⟩, [f ≽ 0] {dbx g}, Q) = {D → ḟ ≥ gf} (vc-dbx2)

vc(⟨ẋ = e&D⟩, [f ≽ 0] {bc}, Q) = {D ∧ f = 0 → ḟ > 0} (vc-bc)

All Lie derivatives are computed with respect to ẋ = e and the equations given
in gvar1 . . . gvarm. For the (dbx) rule, if no cofactor g is provided, we attempt
to compute the cofactor automatically. In the case of an equality invariant, this
reduces to simplifying ḟ/f into polynomial form. In the case of an inequality
invariant, we attempt to find a polynomial quotient of ḟ and f with a non-
negative remainder.

Theorem 1. A Hoare triple {P1 ∧ · · · ∧ Pm}T {Q1 ∧ · · · ∧Qn} holds if all con-
ditions in VC({P1 ∧ · · · ∧ Pm}T {Q1 ∧ · · · ∧Qn}) hold.

Proof. We give the full proof in Appendix B. In short, we proceed by structural
induction on T . The difficult case is when T is an ODE. We apply the (sln),
(dW) or (dG) rule, depending on the annotations. In the cases of (dW) and
(dG), we proceed to isolate each invariant by applying the (dC) rule. Then we
use (dI), (dbx) or (bc) rules, depending on the annotation, to conclude the proof
for each invariant.

5 Labels

VCs generated by the procedure in Section 4 will be proved using Z3 or Wolfram
Engine. In this section, we introduce a labeling mechanism to store which solver
is used for each VC, in a way that is robust to minor modifications of the program
or its annotations.

As indicated in Section 4, the generation of a VC starts from a postcondition
or invariant and proceeds bottom up through the program. We call the post-
condition or invariant at the beginning of this process the conclusion assertion
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of the VC. We associate each VC to its conclusion assertion. Labels are used to
distinguish between multiple VCs from the same conclusion assertion. They can
arise for the following reasons:

– Loop and ODE invariants produce VCs for showing that they initially hold,
and for showing that they are maintained by the loop or ODE.

– If-then-else and nondeterministic choice produce multiple preconditions, at
least one for each branch.

– Each ODE produces preconditions for both the case when the domain D
holds initially, and for when D does not hold.

A label consists of two parts: a category label and a branch label. The cat-
egory label is either empty or one of “init”, “maintain”, “init all”. The branch
label is a list, separated by “.”, of either “skip”, “exec”, or n(b) where n is a
positive integer and b is a branch label itself. We write n instead of n() when
the inner branch label is empty.

Category Labels Category labels use “init” (“init all”) and “maintain” to
distinguish between VCs with loop or ODE invariants as conclusion assertions.
For loops, the VCs for showing the invariant holds initially are labeled “init”,
and the VCs that result from showing the invariant is maintained by the loop
are labeled “maintain” (when there are nested loops or ODEs in the loop body,
multiple VCs are computed in the loop body, this applies only to those with the
invariant as conclusion assertion).

For an ODE, the VC coming from (pre-dW-init) (resp. (pre-dG-init)) are la-
beled “init” (resp. “init all”). The VCs coming from (vc-dC), for showing each
invariant is maintained during evolution, are labeled “maintain”.

The category label is empty in all other cases.

Branch Labels Branch labels help to distinguish VCs generated by executing
different branches of programs.

The positive integer n handles branches created by ‘if B then S1 else S2’ or
‘S1 ++S2’. Each value of n (starting from 1) corresponds to one branch. Sequence
labels b.b are used for sequences of such commands. For example, the branches for
‘S1 ++S2;S3 ++S4’ have labels 1.1, 1.2, 2.1 and 2.2. Nested labels n(b) are used
for nested commands. For example, the branches for if B then S1 ++S2 else S3

have labels 1(1), 1(2) and 2, corresponding to S1, S2 and S3, respectively.

The labels “skip” and “exec” are used for branches of the ODE. The branch
where the initial state does not satisfy domain D is labeled “skip”. The other
branch, where the ODE is executed, is labeled “exec”. They come from applying
the rules (vc-dWG-skip) and (vc-dWG-exec), respectively.
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Example 1. This example illustrates assignments, nondeterminisic choice, and
loops.

{x ≤ 0}
x := −x;
(x := x+ 1 ++x := x+ 2)∗
invariant [x ≥ 0];

x := x+ 1
{x ≥ 1}

The computation starts at postcondition x ≥ 1. Applying (pre-assn) and (vc-
loop-exit), we get the VC x ≥ 0 → x + 1 ≥ 1. Applying (pre-loop), the loop’s
precondition is x ≥ 0. The whole program’s precondition is −x ≥ 0 by applying
(pre-assn) again. The loop body yields the preconditions x+1 ≥ 0 and x+2 ≥ 0
by (pre-choice) and (pre-assn). Then we get x ≥ 0 → x + 1 ≥ 0 and x ≥ 0 →
x+ 2 ≥ 0 by applying (vc-loop-maintain). The overall VCs and their labels are:

VC Conclusion Assertion Label

x ≤ 0 → −x ≥ 0 x ≥ 0 (inv) init

x ≥ 0 → x+ 1 ≥ 1 x ≥ 1 (post) ϵ

x ≥ 0 → x+ 1 ≥ 0 x ≥ 0 (inv) maintain 1

x ≥ 0 → x+ 2 ≥ 0 x ≥ 0 (inv) maintain 2

Example 2. This example illustrates non-deterministic, assignments and ODEs
(#4 of KeYmaera X’s basic benchmarks):

{x ≥ 0}
x := x+ 1; t := ∗ (t ≥ 0);
⟨ṫ = −1, ẋ = 2& t > 0⟩ invariant [x ≥ 1]

{x ≥ 1}

The computation of pre starts at postcondition x ≥ 1. By (pre-dWG-skip) and
(pre-dW-init), the ODE’s preconditions are ¬t > 0 → x ≥ 1 and t > 0 →
x ≥ 1. By (pre-nassn) and (pre-assn), the whole program’s preconditions are
t1 ≥ 0 → t1 > 0 → x ≥ 1 and t1 ≥ 0 → ¬t1 > 0 → x + 1 ≥ 1. The VCs
x ≥ 1 ∧ t = 0 → x + 1 ≥ 1 and t ≥ 0 → 2 ≥ 0 come from (vc-dWG-exec) and
(vc-dI2), respectively. The overall list of VCs is:

VC Conclusion Assertion Label

x ≥ 0 → t1 ≥ 0 → t1 > 0 → x+ 1 ≥ 1 x ≥ 1 (inv) init

x ≥ 0 → t1 ≥ 0 → ¬t1 > 0 → x+ 1 ≥ 1 x ≥ 1 (post) skip

x ≥ 1 ∧ t = 0 → x ≥ 1 x ≥ 1 (post) exec

t ≥ 0 → 2 ≥ 0 x ≥ 1 (inv) maintain

Example 3. Finally, we consider an example with multiple ghost variables (#18
of KeYmaera X’s basic benchmarks):

{x ≥ 0}
t := ∗ (t ≥ 0); ⟨ẋ = x, ṫ = −1& t > 0⟩;
invariant ghost y (ẏ = −y) ghost z (ż = z/2)
[xy ≥ 0] [yz2 = 1];

{x ≥ 0}
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VC Conclusion Assertion Label

x ≥ 0 → t1 ≥ 0 → t1 > 0 → ∃y z. xy ≥ 0 ∧ yz2 = 1 invariants init all

x ≥ 0 → t1 ≥ 0 → ¬t1 > 0 → x ≥ 0 x ≥ 0 (post) skip

xy ≥ 0 ∧ yz2 = 1 ∧ t = 0 → x ≥ 0 x ≥ 0 (post) exec

t ≥ 0 → x · (−y) + xy ≥ 0 xy ≥ 0 (inv) maintain

xy ≥ 0 → t ≥ 0 → yz(z/2) + (y(z/2) + (−y)z)z = 0 yz2 = 1 (inv) maintain

The first VC comes from (pre-dG-init). The remaining VCs are similar to Exam-
ple 2, except that there is one VC for maintaining each invariant. When verifying
the second invariant, the (dC) rule allows us to assume the first invariant.

6 Highlighting

In this section, we explain the highlighting mechanism we devised to help the user
understand how each VC is derived from the program. Essentially, when the user
hovers over a VC, we highlight all parts of the program that contributes to the
computation of the VC, including commands, assertions and domain constraints.
Why3 [5] has a similar mechanism, but the highlighting is less detailed.

We highlight any assertion that contributes to the VC. In particular, invari-
ants of an ODE that are already proved will be highlighted when proving the
next invariant because they are added as assumptions in (vc-dC). Preconditions
whose variables are never reassigned will be highlighted because they are added
as assumptions in (vc).

Domain constraints of ODEs will be highlighted if they are used in the VC
(e.g. the domain constraint D in the VC generated by (vc-dWG-exec)).

Atomic commands are highlighted if they are traversed during VC generation.
ODE commands are highlighted for VCs computed by (vc-dC) or (pre-sln). For if-
then-else and nondeterministic choice, only the branch that is actually traversed
during VC generation will be considered for highlighting.

Fig. 1 and 2 show the highlighting for some the VCs from Examples 1 and 2.

7 Implementation and Evaluation

In this section, we present the implementation of HHLPy and evaluate it on
Simulink/Stateflow models and on KeYmaera X benchmarks.

7.1 Implementation

The backend of HHLPy is implemented in Python, and the graphical user in-
terface is implemented using JavaScript. Fig. 3 shows the architecture of the
tool. The user inputs HCSP programs and annotations in the editor (the HCSP
programs can also come from translation of Simulink/Stateflow models). The
core HHLPy engine then parses the input and generates VCs. The user interface
displays the VCs and allows users to choose a solver for each VC. The solver will
be invoked, with the results displayed to the user interface. A screenshot of the
user interface is shown in Fig. 4.
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{x ≤ 0}
x := −x;
(x := x+ 1 ++x := x+ 2)∗

invariant [x ≥ 0];
x := x+ 1

{x ≥ 1}

(a) VC labeled ‘init’

{x ≤ 0}
x := −x;
(x := x+ 1 ++x := x+ 2)∗

invariant [x ≥ 0];
x := x+ 1

{x ≥ 1}

(b) VC for the postcondition (no label)

{x ≤ 0}
x := −x;
(x := x+ 1 ++x := x+ 2)∗

invariant [x ≥ 0];
x := x+ 1

{x ≥ 1}

(c) VC labeled ‘maintain 1’

{x ≤ 0}
x := −x;
(x := x+ 1 ++x := x+ 2)∗

invariant [x ≥ 0];
x := x+ 1

{x ≥ 1}

(d) VC labeled ‘maintain 2’

Fig. 1: Highlighting for the four VCs in Example 1

{x ≥ 0}
x := x+ 1; t := ∗(t ≥ 0);
⟨ṫ = −1, ẋ = 2& t > 0⟩

invariant [x ≥ 1]
{x ≥ 1}

(a) VC labeled ‘skip’

{x ≥ 0}
x := x+ 1; t := ∗(t ≥ 0);
⟨ṫ = −1, ẋ = 2& t > 0⟩

invariant [x ≥ 1]
{x ≥ 1}

(b) VC labeled ‘maintain’

Fig. 2: Highlighting for the two of the VCs in Example 2

Fig. 3: Architecture of HHLPy

7.2 Evaluation on Simulink/Stateflow Models

To illustrate the use of our tool as part of an existing toolchain to verify cor-
rectness of Simulink/Stateflow models, we show two example models, one from
Simulink and one from Stateflow.

Cruise Control System The first example is a cruise control system of an
automotive vehicle [13]. The system stabilizes the speed of a vehicle around
some desired speed (15 m/s in our case) using a PI controller. The PI controller
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Fig. 4: Screenshot of user interface. The left panel (1) shows a list of example
files. The middle panel (2) is the editor area, where user can edit the program
and add annotations either directly as text or by clicking on buttons. The right
panel (3) shows the VCs. When hovering over each VC, the relevant part of the
code is highlighted.

adjusts the control force according to the difference between actual speed and
desired speed as well as its integral. The vehicle follows its physical dynamics.
The Simulink models are presented in Appendix C.

We first applied the approach by Xu et al. [30] to translate the Simulink
models into an HCSP program. In the program, the controller and vehicle dy-
namics are combined into a single ODE. Given the initial speed v = 14 and
initial integral value I = 700 of the controller, which are close to the stable
point (v = 15, I = 750), we want to verify that the speed remains in the interval
[13.5, 16.5].

To verify the Hoare triple, we annotated the ODE and loop with the invariant
1.3 ∗ (I − 750)2 − 198 ∗ (I − 750) ∗ (v− 15) + 12192 ∗ (v− 15)2 ≤ 5542, and used
(dI) rule to prove the ODE invariant. The tool generated seven VCs, and Z3 can
prove all of them.

1 pre [v == 14][I == 700];
2

3 t := 0;
4 tick := 0;
5 tt := 0;
6

7 {
8 {tt dot = 1, I dot = (15 − v) ∗ 40, v dot = ((15 − v) ∗ 600 + I − v ∗ 50) ∗ 0.001 & tt < 1}
9 invariant [1.3∗(I−750)ˆ2 − 198 ∗ (I−750)∗(v−15)+12192∗(v−15)ˆ2<=5542];

10 t := t + tt;
11 tick := tick + 1;
12 tt := 0;
13 }∗
14 invariant [1.3∗(I−750)ˆ2 − 198 ∗ (I−750)∗(v−15)+12192∗(v−15)ˆ2<=5542];
15 post [v >= 13.5][v <= 16.5];

Sawtooth Wave The sawtooth wave is a Stateflow model generating a signal
that alternates between increasing from 0 to 1 and decreasing from 1 to 0. It
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illustrates functionality in Stateflow such as hierarchical states and specifying
ODEs in a state. The Stateflow model is presented in Appendix C. The signal
x follows the ODE ẋ = y, with y switching between 1 and −1 per unit time. We
want to verify that every time y switches, x is still between 0 and 1.

We translated the Stateflow model into an HCSP program with the approach
by Guo et al. [10] (code shown in Appendix C). To verify the program, the loop is
annotated with four invariants (mostly having to do with relationship between
Stateflow locations and value of variable x), and the ODE is annotated with
“solution”. A total of 62 VCs are generated and proved to be true by Z3.

7.3 Evaluation on Benchmarks from KeYmaera X

We also evaluated our tool on the basic and nonlinear benchmarks4 from KeY-
maera X. We first translated the examples from dL to HCSP manually, trying
to maintain semantic equivalence as much as possible. Due to the differences be-
tween dL and HCSP, some examples can not be translated into HCSP programs.
We annotated the programs with invariants and proof rules, mostly following the
existing proofs in KeYmaera X.

Given the annotations, HHLPy can verify 50 out of 60 examples in the basic
benchmarks. In comparison, KeYmaera X solves 58 examples in the scripted
mode (with detailed proof scripts), and 55 examples in the hints mode (with
invariants annotated in the model) [16]. Of the ten unsolved examples, we are
unable to translate eight of them to HCSP due to use of dL-specific constructs;
one is non-polynomial; and the last one makes use of invariants containing old
versions of variables. For the nonlinear benchmarks, HHLPy can verify 100 out
of 141 examples (compared to 108 in the scripted mode and 95 in the hints
mode for KeYmaera X). Most of the unsolved ones are because we are unable
to find the invariants or their VCs cannot be proved in reasonable time by Z3
or Wolfram Engine.

In the 150 examples solvable by HHLPy, the user only needs to add annota-
tions including loop/ODE invariants and ODE rules; just a couple of annotations
are needed per problem. For some problems, it is necessary to switch the backend
solver from the default Z3 to Wolfram Engine. After this, HHLPy can finish the
proof automatically. These experiments show that our tool can be used to solve
a wide range of examples from existing benchmarks with little manual effort.

8 Related Work

Differential dynamic logic (dL) [21,23] models hybrid systems by extending dy-
namic logic with continuous evolution. Reasoning rules about continuous evo-
lution include differential invariants, differential weakening, differential cut, and
differential ghosts. The rules are stated in the form of a uniform substitution

4 The benchmarks are available at https://github.com/LS-Lab/KeYmaeraX-
projects/tree/master/benchmarks

https://github.com/LS-Lab/KeYmaeraX-projects/tree/master/benchmarks
https://github.com/LS-Lab/KeYmaeraX-projects/tree/master/benchmarks
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calculus [22], and they are complete [26]. Differential dynamic logic has been im-
plemented in KeYmaera [24] and KeYmaera X [9], whose user interfaces display
current subgoals in sequent calculus form and allow users to point and click to
construct proofs. The Bellerophon language allows users to perform proofs using
a tactic language [8]. The KeYmaera X tool produces proofs that can be inde-
pendently checked in Isabelle and Coq [1]. Liebrenz et al. developed a method
to translate Simulink models to dL and to verify them in KeYmaera X [15].

Huerta y Munive and Struth represented dL programs using Kleene algebras,
and built verification components for hybrid systems in Isabelle/HOL [19, 20].
Foster et al. proposed Hoare logic rules and refinement calculi for hybrid pro-
grams [7] and extended the verification components in Isabelle/HOL [6], e.g.,
with syntax translation to obtain more user-friendly modeling and specifica-
tion languages and with proof automation using Eisbach. Huerta y Munive and
Struth also described formalization of solutions to affine and linear systems of
ODEs, with applications to verifying correctness of such systems [18].

Both of the above series of works focused on hybrid programs modeled using
dL. As discussed in Section 2 and 3, the semantics of continuous evolution is
different from that in dL, hence the proof rules need to be adapted, resulting
in particular to significant changes to differential weakening and differential cut
rules. Compared to the previous version of hybrid Hoare logic [28], we focus
only on the sequential fragment of HCSP, resulting in much simpler rules that
permits automatic VC generation. On the other hand, we consider a full set of
reasoning rules for ODEs, rather than only the invariant rule in [28].

The design of our tool is similar to many other (semi-)automatic program
verification tools, such as Dafny [14], VeriFast [11], and Why3 [5], in that an-
notations are inserted into the program code. Our work differs from these tools
firstly in being able to handle hybrid programs. Moreover, we designed detailed
labeling and highlighting mechanisms to improve robustness of the annotations
and help visualization. These improvements are not limited to hybrid programs,
and can potentially be incorporated into other program verification tools as well.

9 Conclusion

We presented HHLPy, a tool for verification of hybrid programs written in the
sequential fragment of HCSP. The backend of the tool implements a Hoare logic
that includes rules for reasoning about continuous evolution adapted from dL.
We also designed labeling and highlighting mechanisms to improve user interac-
tion. We demonstrated the capabilities of the tool on HCSP programs translated
from Simulink/Stateflow models and on KeYmaera X benchmarks.

In this paper, the deduction system and its proof of soundness is presented
only informally. We leave extension of the deduction system to handle communi-
cation, interrupts, and parallel composition, together with formal treatments of
logical issues such as completeness, to future work. On the side of implementa-
tion and applications, we intend to further extend the tool to be able to handle
non-polynomial ODEs and invariants and permit interactive proofs of VCs.
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A More on the Proof Rules

In this section, we provide more details on the proof rules.

A.1 Proof Rules for Other Commands

The proof rules for commands other than the ODE are given in Fig. 5.

skip
{P}skip{P}

assign
{P [e/x]}x := e{P}

{P1}c1{Q} {P2}c2{Q}
ichoice

{P1 ∧ P2}c1 ++ c2{Q}

nondet-assign
{B[y/x] → Q[y/x]}x := ∗(B){Q}

{P}c1{Q} {Q}c2{R}
seq

{P}c1; c2{R}

{P1}c1{Q} {P2}c2{Q}
ite

{(B → P1) ∧ (¬B → P2)}if B then c1 else c2{Q}

{I}c{I}
loop

{I}c ∗ {I}
P ′ → P {P}c{Q} Q → Q′

conseq
{P ′}c{Q′}

Fig. 5: Hoare rules for the non-ODE commands

A.2 Example and Proof for the (dW) Rule

We give some examples of applying the (dW) rule with different invariants, such
as the trivial invariants true and false or the non-trivial invariant x− y = 1.

Example 4. In this example, the precondition guarantees that the ODE starts
inside the domain D. The Hoare triple is:

{x < 5}⟨ẋ = 1&x < 5⟩{x = 5}

No invariant is needed (set I = true by default). From the postcondition x = 5,
we obtain precondition ¬x < 5 → x = 5 and VC x = 5 → x = 5. So the VCs
are:

x < 5 → ¬x < 5 → x = 5
x = 5 → x = 5

Example 5. In this example, the precondition guarantees that the ODE starts
outside the domain D. The Hoare triple is:

{x > 10}⟨ẋ = 1&x < 5⟩{x > 8}

Here we set invariant to be false. From the postcondition x > 8, we obtain
precondition ¬x < 5 ∧ x > 8 and no VCs from the ODE. The overall VCs are:

x > 10 → ¬x < 5 ∧ x > 8



HHLPy: Practical Verification of Hybrid Systems using Hoare Logic 19

Example 6. Now consider a case where the starting position may or may not lie
within the domain D. The Hoare triple is:

{x < 6}⟨ẋ = 1&x < 5⟩{x ≥ 5 ∧ x < 6}

No invariant is needed (I = true is set by default). From the postcondition, we
obtain the precondition ¬x < 5 → x ≥ 5 ∧ x < 6, and the VC x = 5 → x ≥
5 ∧ x < 6. So the overall VCs are:

x < 6 → ¬x < 5 → x ≥ 5 ∧ x < 6
x = 5 → x ≥ 5 ∧ x < 6

Example 7. Now we consider an example where a non-trivial invariant must be
introduced. The Hoare triple is:

{x = 0 ∧ y = 0}⟨ẋ = 1, ẏ = 1&x < 5⟩{y = 5}

We set the invariant to be x− y = 0, requiring to show

Jx ≤ 5K⟨ẋ = 1, ẏ = 1⟩Jx− y = 0K

We get the VC x = 5 ∧ x − y = 0 → y = 5 and the precondition (x < 5 →
x− y = 0) ∧ (¬x < 5 → y = 5).

Proof (of the (dW) rule). Given starting state x, we divide into two cases based
on whether x satisfies domain D.

1. If x satisfies D, then there exists a solution γ : [0, T ] → Rn, such that γ(t)
satisfies D for t ∈ [0, T ) and γ(T ) satisfies ¬D, and we wish to show that
γ(T ) satisfies Q. By the continuity of γ, we get that γ(t) satisfies D for
t ∈ [0, T ]. Moreover, since D → I holds in the precondition, we get that γ(0)
satisfies I as well. Then from JDK⟨ẋ = e⟩JIK, we get that γ(t) satisfies I for
t ∈ [0, T ]. From ∂D ∧ I → Q and the fact that γ(T ) satisfies I and ∂D, we
get that γ(T ) satisfies Q, as desired.

2. If x does not satisfy D, then the ODE is not executed, and we wish to show
that x satisfies Q. Since ¬D → Q holds in the precondition, we get that x
satisfies Q, as desired.

A.3 Example and Proof for the (dI) Rule

We give an example showing the use of the (dI) rule.

Example 8 (Example 7 continued). In this example, we continue with the invari-
ant triple we get:

Jx ≤ 5K⟨ẋ = 1, ẏ = 1⟩Jx− y = 0K

The Lie derivative of x − y is ẋ − ẏ = 1 − 1 = 0. So the premise of the (dI)
rule is x ≤ 5 → 0 = 0.



20 H. Sheng, A. Bentkamp et al.

Proof (of the (dI) rule). We consider each of the rules in turn.

Rule dI= Consider a solution γ : [0, T ] → Rn of the ODE, satisfying the condi-
tion that γ(t) satisfies P for all t ∈ [0, T ]. Then, the derivative of f(γ(t)) is
0 for all t ∈ [0, T ]. This shows that f(γ(t)) is constant within this interval.
If furthermore f(γ(0)) = 0, then we get f(γ(T )) = 0, as desired.

Rule dI≽ Similar to before, except now the derivative of f(γ(t)) is greater than
or equal to 0 for all t ∈ [0, T ], so f(γ(t)) is a non-decreasing function of t
within this interval. If furthermore f(γ(0)) ≽ 0, then we get f(γ(T )) ≽ 0,
as desired.

Rule dI ̸= Similar to before, we get that the derivative of f(γ(t)) is 0 for all t ∈
[0, T ]. This shows that f(γ(t)) is constant within this interval. If furthermore
f(γ(0)) ̸= 0, then we get f(γ(T )) ̸= 0, as desired.

A.4 Example and Proof for the (dC) Rule

Example 9. In this example, we insert an intermediate invariant to help prove
the final invariant. The invariant triple is:

Jy ≤ 1K⟨ẋ = y, ẏ = 1⟩Jy > 0 ∧ x > 0K

Using the (dC) rule, the two premises are:

Jy ≤ 1K⟨ẋ = y, ẏ = 1⟩Jy > 0K

Jy ≤ 1 ∧ y > 0K⟨ẋ = y, ẏ = 1⟩Jx > 0K

Both the two premises can be proved by using the (dI) rule.

Proof (of the (dC) rule). Consider a solution γ : [0, T ] → Rn of the ODE,
satisfying the condition that γ(t) satisfies P for all t ∈ [0, T ], and γ(0) satisfies
Q1 ∧ Q2. We wish to show γ(t) satisfies Q1 ∧ Q2 for all t ∈ [0, T ]. By the first
premise, we get γ(t) satisfies Q1 for all t ∈ [0, T ]. Then by the second premise,
γ(t) satisfies Q1 ∧Q2 for all t ∈ [0, T ].

A.5 Example and Proof for the (dG) Rule

Example 10. In this example, the Hoare triple is:

{x > 0 ∧ t = 0}⟨ẋ = x, ṫ = 1& t < 10⟩{x > 0}

Using the (dG) rule, we introduce a ghost variable y with the differential equation
ẏ = −y

2 and set the invariant for the new differential equations to be xy2 = 1.
Then the new goal is:

Jt < 10K⟨ẋ = x, ẏ = −y

2
, ṫ = 1⟩Jxy2 = 1K

We get the VC t = 10 ∧ xy2 = 1 → x > 0 and the precondition (t < 10 →
∃y.xy2 = 1) ∧ (¬t < 10 → x > 0).
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Proof (of the (dG) rule). Given starting state x0, we distinguish two cases based
on whether x0 satisfies D.

1. If x0 satisfies D, then there exists a solution γ : [0, T ] → Rn of the ODE
⟨ẋ = e⟩ with initial condition x(0) = x0, such that γ(t) satisfies D for
t ∈ [0, T ) and γ(T ) satisfies ¬D. We wish to show that γ(T ) satisfies Q. Since
D → ∃y.I holds in the precondition and x0 satisfies D, using r to denote a
witness of y, we get that (x0, r) satisfies I. With f(x,y) satisfying Lipschitz
condition, let ψ : [0, T ] → R denote the solution of ODE ⟨ẏ = f(x,y)⟩
with initial value r. Given that y are fresh variables and do not limit the
duration of the solutions of x, we get that (γ,ψ) is the solution of the ODE
⟨ẋ = e, ẏ = f(x,y)⟩ with initial condition (x0, r). Then from JDK⟨ẋ =
e, ẏ = f(x,y)⟩JIK, we get that (γ(t),ψ(t)) satisfies I for t ∈ [0, T ]. From
∂D ∧ I → Q and (γ(T ),ψ(T )) satisfies I and ∂D, we get that (γ(T ),ψ(T ))
satisfies Q. Since y does not occur in Q, we get that γ(T ) satisfies Q, as
desired.

2. If x0 does not satisfy D, the proof is similar to the one for the (dW) rule.

A.6 Example and Proof for the Barrier Certificate Rule

Example 11. In this example, we use the (bc) rule to prove the following invari-
ant triple:

Jt ≤ 10K⟨ẋ = x3 + x4⟩Jx3 > 5K

Then the premise of the (bc) rule is

t ≤ 10 ∧ x3 = 5 → 3x2(x3 + x4) > 0

Proof (of the (bc) rule). The proof is by contradiction. Consider a solution γ :
[0, T ] → Rn of the ODE, satisfying the condition that γ(t) satisfies P for all
t ∈ [0, T ], and γ(0) satisfies f ≥ 0. Assume there exists t′ ∈ [0, T ] such that
f(γ(t′)) < 0. According to the proof of strict barrier certificate [27] in [32], we
get that there exists tsup ∈ [0, t′) satisfying f(γ(tsup)) = 0 and the Lie derivative

of f at tsup is non-positive. However, according to the premise, ḟ > 0 when f = 0,
which leads to a contradiction. Therefore, there cannot exist t′ ∈ [0, T ] such that
f(γ(t′)) < 0, i.e. for all t ∈ [0, T ], f(γ(t′)) ≥ 0.

The proof is similar when considering the case where the invariant is f > 0.

A.7 Example and Proof for the Darboux Rule

Example 12. In this example, we use the (dbx=) rule. The invariant triple is:

Jt ≤ 1K⟨ẋ = 5x2 + 3x, ż = 5zx+ 3z, ṫ = 1⟩Jx+ z = 0K

Then, using the (dbx=) rule with g = 5x+3, we obtain the following premise of
the (dbx=) rule:

t ≤ 1 → 5x2 + 3x+ 5zx+ 3z = (5x+ 3)(x+ z)
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Example 13. In this example, we use (dbx≽) rule. The invariant triple is:

Jt ≤ 1K⟨ẋ = −x+ 1, ṫ = 1⟩Jx > 0K

Then, by using the (dbx≽) rule with which g = −1, we obtain the following
premise of the (dbx≽) rule:

t ≤ 1 → −x+ 1 ≥ −x

Proof (of Darboux rule). We consider each rule in turn.

Rule (dbx=) Consider a solution γ : [0, T ] → Rn to the ODE, satisfying the
condition that γ(t) satisfies P for all t ∈ [0, T ], and γ(0) satisfies f = 0.
We wish to show that f(γ(t)) = 0 for all t ∈ [0, T ]. According to [25], given
ḟ = gf , f = 0 stays invariant along the (analytic) solution to the ODE.
Therefore, γ(t) satisfies f = 0 for all t ∈ [0, T ].

Rule (dbx≽) This rule can be derived by (dI), (dC), (dG) rule according to [25].

A.8 Example and Proof for the Solution Rule

Example 14. We illustrate rule (sln) with the following example:

{x = 0 ∧ y = 0}⟨ẋ = 1, ẏ = x&x < 2⟩{y = 2}

The solution u(τ, x0, y0) is given by (τ+x0,
1
2τ

2+x0t+y0). Hence D(u(τ, x0, y0))
is τ + x0 < 2, and P ′(x) is

∀t > 0. (∀0 ≤ τ < t. τ + x < 2) ∧ ¬(t+ x < 2) → 1

2
t2 + xt+ y = 2

The two premises ∀0 ≤ τ < t. τ + x < 2 and ¬(t+ x < 2) of the implication are
together equivalent to t+ x = 2. Hence, under the assumption of x < 2 (so that
t > 0 ∧ t+ x = 2 has a unique solution), the predicate P ′ reduces to

1

2
(2− x)2 + x(2− x) + y = 2

So the precondition we derive from the solution rule is (x < 2 → 1
2 (2 − x)2 +

x(2−x)+y = 2)∧ (¬x < 2 → y = 2). Since x = 0∧y = 0 implies this condition,
we prove the Hoare triple.

Proof (of solution rule). Given starting state x0, we distinguish two cases based
on whether x0 satisfies domain D.

1. If x0 satisfies D, then there exists a solution γ : [0, T ] → Rn of the ODE
ẋ = e with initial state x0, such that γ(τ) satisfies D for τ ∈ [0, T ) and
γ(T ) satisfies ¬D, and we wish to show that γ(T ) satisfies Q. Since D → P ′

holds in the precondition, we get that x0 satisfies P ′:

∀t > 0. (∀0 ≤ τ < t.D(u(τ,x0))) ∧ ¬D(u(t,x0)) → Q(u(t,x0)).
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Then let t = T. We get:

∀0 ≤ τ < T.D(u(τ,x0)) ∧ ¬D(u(T,x0)) → Q(u(T,x0)).

Next, since u is the unique solution to the differential equation ẋ = e, we
get that γ(τ) = u(τ,x0) for all 0 ≤ τ ≤ T . Then we get:

∀0 ≤ τ < T.D(γ(τ)) ∧ ¬D(γ(T )) → Q(γ(T )).

From the fact that γ(τ) satisfies D for τ ∈ [0, T ) and γ(T ) satisfies ¬D, we
get γ(T ) satisfies Q, as desired.

2. If x does not satisfy D, then the ODE is not executed, and we wish to show
that x satisfies Q. Since ¬D → Q holds in the precondition, x satisfies Q,
as desired.

B Proof of Soundness of the Verification Condition
Generation

Theorem 1. A Hoare triple {P1∧· · ·∧Pm}T {Q1∧· · ·∧Qn} holds if all conditions
in VC({P1 ∧ · · · ∧ Pm}T {Q1 ∧ · · · ∧Qn}) hold.

Proof. We proceed by structural induction on T . We assume an initial state in
which P1, . . . , Pm hold. We must show that after executing T on this state, if T
terminates, Q1, . . . , Qn hold.

The predicates P̃1, . . . , P̃m̃ in (vc) are the subset of the preconditions P1, . . . ,
Pm whose variables are never reassigned in T . They hold in the initial state by
assumption and since their variables never change, they hold in all states in the
course of the program T . Thus, for the purposes of this proof, we can assume
that P̃1, . . . , P̃m′ always hold. Therefore, we can also assume that the elements
of vc(T , {Q1, . . . , Qn}) always hold.

If T is any command except loop or ODE, the correctness of the Hoare triple
is easy to see using the induction hypotheses and the VCs emerging via (pre) from
(pre-skip), (pre-assn), (pre-seq), (pre-if), (pre-else), (pre-choice), and (pre-nassn).

If T is a loop S∗ with invariants I1, . . . , In, we proceed as follows. Since
pre(T , Q1, . . . , Qn) = {I1, . . . In} by (pre-loop), we have P1 ∧ · · · ∧ Pm → Ii ∈
VC({P1, . . . , Pm}T {Q1, . . . , Qn}) (pre) for each Ii. Thus, all Ii hold in the initial
state. The induction hypothesis for S, in conjunction with (vc-loop-body) and
(vc-loop-maintain), imply {I1, . . . , In}S{I1, . . . , In}. Hence, the Ii not only hold
in the initial state, but still after executing S arbitrarily often. Finally, by (vc-
loop-exit), Q1, . . . , Qn hold in the final state.

If T is a an ODE ⟨ẋ = e&D⟩ with invariants I1, . . . , Ik, we proceed as
follows.

If the ODE is annotated to use the solution rule, we apply it using the VC
stemming from the precondition (pre-sln), and we are done.

Otherwise, invariants have been specified, or the default invariant I1 = true
has been set. If additionally ghost variables are specified, we employ the (dG)
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rule; if no ghost variables are specified we employ the (dW) rule. The VCs stem-
ming from (pre-dWG-skip) and (pre-dW-init) or (pre-dG-init) show that the rule
(dW) or (dG) is applicable to our desired Hoare triple {P1, . . . , Pm}T {Q1, . . . , Qn}.
The condition (vc-dWG-exec) discharges the right premise of the (dW) or (dG)
rule. It remains the left premise

JDK⟨ẋ = e, ẏ = f(x,y)⟩JI1 ∧ · · · ∧ IkK

(possibly without y in the case of the (dW) rule)
Next, we repeatedly apply the (dC) rule to isolate each invariant Ii. Then it

remains to show

JD ∧ I1 ∧ · · · ∧ Ii−1K⟨ẋ = e, ẏ = f(x,y)⟩JIiK

We distinguish the different rules that could be in the annotation:

– If the user did not specify a rule and Ii is either true or false, what we need
to show is obvious because true and false are always invariants.

– dI: We apply the (dI) rule. Its premise is justified by (vc-dI1), (vc-dI2), or
(vc-dI3).

– dbx: We apply the (dbx) rule. Its premise is justified by (vc-dbx1) or (vc-
dbx2).

– bc: We apply the (bc) rule. Its premise is justified by (vc-bc).

C Simulink/Stateflow Models

C.1 Model for the Cruise Control System Example

Simulink models for the cruise control system are shown in Fig. 6, 7, and 8.

Fig. 6: Simulink Model of Cruise Control System.
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Fig. 7: Simulink Model of Vehicle Dynamics.

Fig. 8: Simulink Model of PI Controller.

Fig. 9: Simulink/Stateflow Model of Sawtooth Wave.
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C.2 Model and Code for the Sawtooth Wave Example

The Stateflow model of the sawtooth wave example is shown in Fig. 9.
Fig. 10 shows the HCSP code that is automatically translated from the State-

flow diagram for the sawtooth example, together with annotations of pre- and
postconditions, invariants, and ODE proof rules used to verify the property that
x remains in the interval [0, 1] for this model.
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1 pre [true ];
2

3 Chart All A := 1;
4 Chart All B := 2;
5 Chart All := 0;
6 x := 1;
7 Chart st := Chart All;
8 t := 1;
9 Chart All st := Chart All A;

10 y := 1;
11

12 {
13 Chart ret := 0;
14 if (Chart All st == Chart All A) {
15 Chart All A done := 0;
16 if (t >= 1) {
17 t := 0;
18 if (Chart All st == Chart All A) {
19 Chart All st := Chart All B;
20 y := −1;
21 Chart All A done := 1;
22 }
23 }
24 Chart ret := Chart All A done;
25 } else if (Chart All st == Chart All B) {
26 Chart All B done := 0;
27 if (t >= 1) {
28 t := 0;
29 if (Chart All st == Chart All B) {
30 Chart All st := Chart All A;
31 y := 1;
32 Chart All B done := 1;
33 }
34 }
35 Chart ret := Chart All B done;
36 }
37 {x dot = y, t dot = 1 & t < 1} solution;
38 }∗
39 invariant [Chart All st == Chart All A −> x == 1]
40 [Chart All st == Chart All B −> x == 0]
41 [Chart All st == Chart All A || Chart All st == Chart All B]
42 [ t == 1];
43

44 post [x >= 0][x <= 1];

Fig. 10: HCSP code translated from the Stateflow diagram for the sawtooth
example, with annotations.
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